pyspark.sql.DataFrameReader.load¶
-
DataFrameReader.
load
(path: Union[str, List[str], None] = None, format: Optional[str] = None, schema: Union[pyspark.sql.types.StructType, str, None] = None, **options: OptionalPrimitiveType) → DataFrame¶ Loads data from a data source and returns it as a
DataFrame
.- Parameters
- pathstr or list, optional
optional string or a list of string for file-system backed data sources.
- formatstr, optional
optional string for format of the data source. Default to ‘parquet’.
- schema
pyspark.sql.types.StructType
or str, optional optional
pyspark.sql.types.StructType
for the input schema or a DDL-formatted string (For examplecol0 INT, col1 DOUBLE
).- **optionsdict
all other string options
Examples
>>> df = spark.read.format("parquet").load('python/test_support/sql/parquet_partitioned', ... opt1=True, opt2=1, opt3='str') >>> df.dtypes [('name', 'string'), ('year', 'int'), ('month', 'int'), ('day', 'int')]
>>> df = spark.read.format('json').load(['python/test_support/sql/people.json', ... 'python/test_support/sql/people1.json']) >>> df.dtypes [('age', 'bigint'), ('aka', 'string'), ('name', 'string')]