FMRegressionModel¶
-
class
pyspark.ml.regression.
FMRegressionModel
(java_model: Optional[JavaObject] = None)¶ Model fitted by
FMRegressor
.Methods
clear
(param)Clears a param from the param map if it has been explicitly set.
copy
([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam
(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap
([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Gets the value of factorSize or its default value.
Gets the value of featuresCol or its default value.
Gets the value of fitIntercept or its default value.
Gets the value of fitLinear or its default value.
Gets the value of initStd or its default value.
Gets the value of labelCol or its default value.
Gets the value of maxIter or its default value.
Gets the value of miniBatchFraction or its default value.
getOrDefault
(param)Gets the value of a param in the user-supplied param map or its default value.
getParam
(paramName)Gets a param by its name.
Gets the value of predictionCol or its default value.
Gets the value of regParam or its default value.
getSeed
()Gets the value of seed or its default value.
Gets the value of solver or its default value.
Gets the value of stepSize or its default value.
getTol
()Gets the value of tol or its default value.
Gets the value of weightCol or its default value.
hasDefault
(param)Checks whether a param has a default value.
hasParam
(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined
(param)Checks whether a param is explicitly set by user or has a default value.
isSet
(param)Checks whether a param is explicitly set by user.
load
(path)Reads an ML instance from the input path, a shortcut of read().load(path).
predict
(value)Predict label for the given features.
read
()Returns an MLReader instance for this class.
save
(path)Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set
(param, value)Sets a parameter in the embedded param map.
setFeaturesCol
(value)Sets the value of
featuresCol
.setPredictionCol
(value)Sets the value of
predictionCol
.transform
(dataset[, params])Transforms the input dataset with optional parameters.
write
()Returns an MLWriter instance for this ML instance.
Attributes
Model factor term.
Model intercept.
Model linear term.
Returns the number of features the model was trained on.
Returns all params ordered by name.
Methods Documentation
-
clear
(param: pyspark.ml.param.Param) → None¶ Clears a param from the param map if it has been explicitly set.
-
copy
(extra: Optional[ParamMap] = None) → JP¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
- extradict, optional
Extra parameters to copy to the new instance
- Returns
JavaParams
Copy of this instance
-
explainParam
(param: Union[str, pyspark.ml.param.Param]) → str¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams
() → str¶ Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap
(extra: Optional[ParamMap] = None) → ParamMap¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
-
getFactorSize
() → int¶ Gets the value of factorSize or its default value.
-
getFeaturesCol
() → str¶ Gets the value of featuresCol or its default value.
-
getFitIntercept
() → bool¶ Gets the value of fitIntercept or its default value.
-
getFitLinear
() → bool¶ Gets the value of fitLinear or its default value.
-
getInitStd
() → float¶ Gets the value of initStd or its default value.
-
getLabelCol
() → str¶ Gets the value of labelCol or its default value.
-
getMaxIter
() → int¶ Gets the value of maxIter or its default value.
-
getMiniBatchFraction
() → float¶ Gets the value of miniBatchFraction or its default value.
-
getOrDefault
(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getParam
(paramName: str) → pyspark.ml.param.Param¶ Gets a param by its name.
-
getPredictionCol
() → str¶ Gets the value of predictionCol or its default value.
-
getRegParam
() → float¶ Gets the value of regParam or its default value.
-
getSeed
() → int¶ Gets the value of seed or its default value.
-
getSolver
() → str¶ Gets the value of solver or its default value.
-
getStepSize
() → float¶ Gets the value of stepSize or its default value.
-
getTol
() → float¶ Gets the value of tol or its default value.
-
getWeightCol
() → str¶ Gets the value of weightCol or its default value.
-
hasDefault
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param has a default value.
-
hasParam
(paramName: str) → bool¶ Tests whether this instance contains a param with a given (string) name.
-
isDefined
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user or has a default value.
-
isSet
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user.
-
classmethod
load
(path: str) → RL¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
predict
(value: T) → float¶ Predict label for the given features.
-
classmethod
read
() → pyspark.ml.util.JavaMLReader[RL]¶ Returns an MLReader instance for this class.
-
save
(path: str) → None¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
-
set
(param: pyspark.ml.param.Param, value: Any) → None¶ Sets a parameter in the embedded param map.
-
setFeaturesCol
(value: str) → P¶ Sets the value of
featuresCol
.
-
setPredictionCol
(value: str) → P¶ Sets the value of
predictionCol
.
-
transform
(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame¶ Transforms the input dataset with optional parameters.
- Parameters
- dataset
pyspark.sql.DataFrame
input dataset
- paramsdict, optional
an optional param map that overrides embedded params.
- dataset
- Returns
pyspark.sql.DataFrame
transformed dataset
-
write
() → pyspark.ml.util.JavaMLWriter¶ Returns an MLWriter instance for this ML instance.
Attributes Documentation
-
factorSize
: pyspark.ml.param.Param[int] = Param(parent='undefined', name='factorSize', doc='Dimensionality of the factor vectors, which are used to get pairwise interactions between variables')¶
-
factors
¶ Model factor term.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fitIntercept
= Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')¶
-
fitLinear
: pyspark.ml.param.Param[bool] = Param(parent='undefined', name='fitLinear', doc='whether to fit linear term (aka 1-way term)')¶
-
initStd
: pyspark.ml.param.Param[float] = Param(parent='undefined', name='initStd', doc='standard deviation of initial coefficients')¶
-
intercept
¶ Model intercept.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
linear
¶ Model linear term.
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
miniBatchFraction
: pyspark.ml.param.Param[float] = Param(parent='undefined', name='miniBatchFraction', doc='fraction of the input data set that should be used for one iteration of gradient descent')¶
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
regParam
= Param(parent='undefined', name='regParam', doc='regularization parameter (>= 0).')¶
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
solver
= Param(parent='undefined', name='solver', doc='The solver algorithm for optimization. Supported options: gd, adamW. (Default adamW)')¶
-
stepSize
= Param(parent='undefined', name='stepSize', doc='Step size to be used for each iteration of optimization (>= 0).')¶
-
tol
= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
-
weightCol
= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
-