pyspark.pandas.DataFrame.mean¶
- 
DataFrame.mean(axis: Union[int, str, None] = None, skipna: bool = True, numeric_only: bool = None) → Union[int, float, bool, str, bytes, decimal.Decimal, datetime.date, datetime.datetime, None, Series]¶ Return the mean of the values.
- Parameters
 - axis{index (0), columns (1)}
 Axis for the function to be applied on.
- skipnabool, default True
 Exclude NA/null values when computing the result.
Supported including NA/null values.
- numeric_onlybool, default None
 Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility.
- Returns
 - meanscalar for a Series, and a Series for a DataFrame.
 
Examples
>>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b'])
On a DataFrame:
>>> df.mean() a 2.0 b 0.2 dtype: float64
>>> df.mean(axis=1) 0 0.55 1 1.10 2 1.65 3 NaN dtype: float64
On a Series:
>>> df['a'].mean() 2.0