pyspark.pandas.DataFrame.replace¶
-
DataFrame.
replace
(to_replace: Union[Any, List, Tuple, Dict, None] = None, value: Optional[Any] = None, inplace: bool = False, limit: Optional[int] = None, regex: bool = False, method: str = 'pad') → Optional[pyspark.pandas.frame.DataFrame]¶ Returns a new DataFrame replacing a value with another value.
- Parameters
- to_replaceint, float, string, list, tuple or dict
Value to be replaced.
- valueint, float, string, list or tuple
Value to use to replace holes. The replacement value must be an int, float, or string. If value is a list or tuple, value should be of the same length with to_replace.
- inplaceboolean, default False
Fill in place (do not create a new object)
- Returns
- DataFrame
Object after replacement.
Examples
>>> df = ps.DataFrame({"name": ['Ironman', 'Captain America', 'Thor', 'Hulk'], ... "weapon": ['Mark-45', 'Shield', 'Mjolnir', 'Smash']}, ... columns=['name', 'weapon']) >>> df name weapon 0 Ironman Mark-45 1 Captain America Shield 2 Thor Mjolnir 3 Hulk Smash
Scalar to_replace and value
>>> df.replace('Ironman', 'War-Machine') name weapon 0 War-Machine Mark-45 1 Captain America Shield 2 Thor Mjolnir 3 Hulk Smash
List like to_replace and value
>>> df.replace(['Ironman', 'Captain America'], ['Rescue', 'Hawkeye'], inplace=True) >>> df name weapon 0 Rescue Mark-45 1 Hawkeye Shield 2 Thor Mjolnir 3 Hulk Smash
Dicts can be used to specify different replacement values for different existing values To use a dict in this way the value parameter should be None
>>> df.replace({'Mjolnir': 'Stormbuster'}) name weapon 0 Rescue Mark-45 1 Hawkeye Shield 2 Thor Stormbuster 3 Hulk Smash
Dict can specify that different values should be replaced in different columns The value parameter should not be None in this case
>>> df.replace({'weapon': 'Mjolnir'}, 'Stormbuster') name weapon 0 Rescue Mark-45 1 Hawkeye Shield 2 Thor Stormbuster 3 Hulk Smash
Nested dictionaries The value parameter should be None to use a nested dict in this way
>>> df.replace({'weapon': {'Mjolnir': 'Stormbuster'}}) name weapon 0 Rescue Mark-45 1 Hawkeye Shield 2 Thor Stormbuster 3 Hulk Smash