RFormulaModel

class pyspark.ml.feature.RFormulaModel(java_model: Optional[JavaObject] = None)

Model fitted by RFormula. Fitting is required to determine the factor levels of formula terms.

Methods

clear(param)

Clears a param from the param map if it has been explicitly set.

copy([extra])

Creates a copy of this instance with the same uid and some extra params.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap([extra])

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

getFeaturesCol()

Gets the value of featuresCol or its default value.

getForceIndexLabel()

Gets the value of forceIndexLabel.

getFormula()

Gets the value of formula.

getHandleInvalid()

Gets the value of handleInvalid or its default value.

getLabelCol()

Gets the value of labelCol or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value.

getParam(paramName)

Gets a param by its name.

getStringIndexerOrderType()

Gets the value of stringIndexerOrderType or its default value ‘frequencyDesc’.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

transform(dataset[, params])

Transforms the input dataset with optional parameters.

write()

Returns an MLWriter instance for this ML instance.

Attributes

featuresCol

forceIndexLabel

formula

handleInvalid

labelCol

params

Returns all params ordered by name.

stringIndexerOrderType

Methods Documentation

clear(param: pyspark.ml.param.Param) → None

Clears a param from the param map if it has been explicitly set.

copy(extra: Optional[ParamMap] = None) → JP

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters
extradict, optional

Extra parameters to copy to the new instance

Returns
JavaParams

Copy of this instance

explainParam(param: Union[str, pyspark.ml.param.Param]) → str

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams() → str

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra: Optional[ParamMap] = None) → ParamMap

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters
extradict, optional

extra param values

Returns
dict

merged param map

getFeaturesCol() → str

Gets the value of featuresCol or its default value.

getForceIndexLabel() → bool

Gets the value of forceIndexLabel.

getFormula() → str

Gets the value of formula.

getHandleInvalid() → str

Gets the value of handleInvalid or its default value.

getLabelCol() → str

Gets the value of labelCol or its default value.

getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getParam(paramName: str)pyspark.ml.param.Param

Gets a param by its name.

getStringIndexerOrderType() → str

Gets the value of stringIndexerOrderType or its default value ‘frequencyDesc’.

hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool

Checks whether a param has a default value.

hasParam(paramName: str) → bool

Tests whether this instance contains a param with a given (string) name.

isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool

Checks whether a param is explicitly set by user or has a default value.

isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool

Checks whether a param is explicitly set by user.

classmethod load(path: str) → RL

Reads an ML instance from the input path, a shortcut of read().load(path).

classmethod read() → pyspark.ml.util.JavaMLReader[RL]

Returns an MLReader instance for this class.

save(path: str) → None

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param: pyspark.ml.param.Param, value: Any) → None

Sets a parameter in the embedded param map.

transform(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame

Transforms the input dataset with optional parameters.

Parameters
datasetpyspark.sql.DataFrame

input dataset

paramsdict, optional

an optional param map that overrides embedded params.

Returns
pyspark.sql.DataFrame

transformed dataset

write() → pyspark.ml.util.JavaMLWriter

Returns an MLWriter instance for this ML instance.

Attributes Documentation

featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')
forceIndexLabel: pyspark.ml.param.Param[bool] = Param(parent='undefined', name='forceIndexLabel', doc='Force to index label whether it is numeric or string')
formula: pyspark.ml.param.Param[str] = Param(parent='undefined', name='formula', doc='R model formula')
handleInvalid: pyspark.ml.param.Param[str] = Param(parent='undefined', name='handleInvalid', doc="how to handle invalid entries. Options are 'skip' (filter out rows with invalid values), 'error' (throw an error), or 'keep' (put invalid data in a special additional bucket, at index numLabels).")
labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')
params

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.

stringIndexerOrderType: pyspark.ml.param.Param[str] = Param(parent='undefined', name='stringIndexerOrderType', doc='How to order categories of a string feature column used by StringIndexer. The last category after ordering is dropped when encoding strings. Supported options: frequencyDesc, frequencyAsc, alphabetDesc, alphabetAsc. The default value is frequencyDesc. When the ordering is set to alphabetDesc, RFormula drops the same category as R when encoding strings.')