pyspark.sql.DataFrame.mapInArrow¶
-
DataFrame.
mapInArrow
(func: ArrowMapIterFunction, schema: Union[pyspark.sql.types.StructType, str]) → DataFrame¶ Maps an iterator of batches in the current
DataFrame
using a Python native function that takes and outputs a PyArrow’s RecordBatch, and returns the result as aDataFrame
.The function should take an iterator of pyarrow.RecordBatchs and return another iterator of pyarrow.RecordBatchs. All columns are passed together as an iterator of pyarrow.RecordBatchs to the function and the returned iterator of pyarrow.RecordBatchs are combined as a
DataFrame
. Each pyarrow.RecordBatch size can be controlled by spark.sql.execution.arrow.maxRecordsPerBatch.- Parameters
- funcfunction
a Python native function that takes an iterator of pyarrow.RecordBatchs, and outputs an iterator of pyarrow.RecordBatchs.
- schema
pyspark.sql.types.DataType
or str the return type of the func in PySpark. The value can be either a
pyspark.sql.types.DataType
object or a DDL-formatted type string.
Notes
This API is unstable, and for developers.
Examples
>>> import pyarrow >>> df = spark.createDataFrame([(1, 21), (2, 30)], ("id", "age")) >>> def filter_func(iterator): ... for batch in iterator: ... pdf = batch.to_pandas() ... yield pyarrow.RecordBatch.from_pandas(pdf[pdf.id == 1]) >>> df.mapInArrow(filter_func, df.schema).show() +---+---+ | id|age| +---+---+ | 1| 21| +---+---+