KolmogorovSmirnovTest¶
-
class
pyspark.ml.stat.
KolmogorovSmirnovTest
¶ Conduct the two-sided Kolmogorov Smirnov (KS) test for data sampled from a continuous distribution.
By comparing the largest difference between the empirical cumulative distribution of the sample data and the theoretical distribution we can provide a test for the the null hypothesis that the sample data comes from that theoretical distribution.
Methods
test
(dataset, sampleCol, distName, *params)Conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equality.
Methods Documentation
-
static
test
(dataset: pyspark.sql.dataframe.DataFrame, sampleCol: str, distName: str, *params: float) → pyspark.sql.dataframe.DataFrame¶ Conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equality. Currently supports the normal distribution, taking as parameters the mean and standard deviation.
- Parameters
- dataset
pyspark.sql.DataFrame
a Dataset or a DataFrame containing the sample of data to test.
- sampleColstr
Name of sample column in dataset, of any numerical type.
- distNamestr
a string name for a theoretical distribution, currently only support “norm”.
- paramsfloat
a list of float values specifying the parameters to be used for the theoretical distribution. For “norm” distribution, the parameters includes mean and variance.
- dataset
- Returns
- A DataFrame that contains the Kolmogorov-Smirnov test result for the input sampled data.
- This DataFrame will contain a single Row with the following fields:
- pValue: Double
- statistic: Double
Examples
>>> from pyspark.ml.stat import KolmogorovSmirnovTest >>> dataset = [[-1.0], [0.0], [1.0]] >>> dataset = spark.createDataFrame(dataset, ['sample']) >>> ksResult = KolmogorovSmirnovTest.test(dataset, 'sample', 'norm', 0.0, 1.0).first() >>> round(ksResult.pValue, 3) 1.0 >>> round(ksResult.statistic, 3) 0.175 >>> dataset = [[2.0], [3.0], [4.0]] >>> dataset = spark.createDataFrame(dataset, ['sample']) >>> ksResult = KolmogorovSmirnovTest.test(dataset, 'sample', 'norm', 3.0, 1.0).first() >>> round(ksResult.pValue, 3) 1.0 >>> round(ksResult.statistic, 3) 0.175
-
static