LDA

class pyspark.mllib.clustering.LDA

Train Latent Dirichlet Allocation (LDA) model.

Methods

train(rdd[, k, maxIterations, …])

Train a LDA model.

Methods Documentation

classmethod train(rdd: pyspark.rdd.RDD[Tuple[int, VectorLike]], k: int = 10, maxIterations: int = 20, docConcentration: float = - 1.0, topicConcentration: float = - 1.0, seed: Optional[int] = None, checkpointInterval: int = 10, optimizer: str = 'em')pyspark.mllib.clustering.LDAModel

Train a LDA model.

Parameters
rddpyspark.RDD

RDD of documents, which are tuples of document IDs and term (word) count vectors. The term count vectors are “bags of words” with a fixed-size vocabulary (where the vocabulary size is the length of the vector). Document IDs must be unique and >= 0.

kint, optional

Number of topics to infer, i.e., the number of soft cluster centers. (default: 10)

maxIterationsint, optional

Maximum number of iterations allowed. (default: 20)

docConcentrationfloat, optional

Concentration parameter (commonly named “alpha”) for the prior placed on documents’ distributions over topics (“theta”). (default: -1.0)

topicConcentrationfloat, optional

Concentration parameter (commonly named “beta” or “eta”) for the prior placed on topics’ distributions over terms. (default: -1.0)

seedint, optional

Random seed for cluster initialization. Set as None to generate seed based on system time. (default: None)

checkpointIntervalint, optional

Period (in iterations) between checkpoints. (default: 10)

optimizerstr, optional

LDAOptimizer used to perform the actual calculation. Currently “em”, “online” are supported. (default: “em”)