pyspark.pandas.DataFrame.to_json¶
-
DataFrame.
to_json
(path: Optional[str] = None, compression: str = 'uncompressed', num_files: Optional[int] = None, mode: str = 'w', orient: str = 'records', lines: bool = True, partition_cols: Union[str, List[str], None] = None, index_col: Union[str, List[str], None] = None, **options: Any) → Optional[str]¶ Convert the object to a JSON string.
Note
pandas-on-Spark to_json writes files to a path or URI. Unlike pandas’, pandas-on-Spark respects HDFS’s property such as ‘fs.default.name’.
Note
pandas-on-Spark writes JSON files into the directory, path, and writes multiple part-… files in the directory when path is specified. This behaviour was inherited from Apache Spark. The number of files can be controlled by num_files.
Note
output JSON format is different from pandas’. It always use orient=’records’ for its output. This behaviour might have to change in the near future.
Note
Set ignoreNullFields keyword argument to True to omit None or NaN values when writing JSON objects. It works only when path is provided.
Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.
- Parameters
- pathstring, optional
File path. If not specified, the result is returned as a string.
- linesbool, default True
If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list like. It should be always True for now.
- orientstr, default ‘records’
It should be always ‘records’ for now.
- compression{‘gzip’, ‘bz2’, ‘xz’, None}
A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename.
- num_filesthe number of files to be written in path directory when
this is a path.
- modestr
Python write mode, default ‘w’.
Note
mode can accept the strings for Spark writing mode. Such as ‘append’, ‘overwrite’, ‘ignore’, ‘error’, ‘errorifexists’.
‘append’ (equivalent to ‘a’): Append the new data to existing data.
‘overwrite’ (equivalent to ‘w’): Overwrite existing data.
‘ignore’: Silently ignore this operation if data already exists.
‘error’ or ‘errorifexists’: Throw an exception if data already exists.
- partition_colsstr or list of str, optional, default None
Names of partitioning columns
- index_col: str or list of str, optional, default: None
Column names to be used in Spark to represent pandas-on-Spark’s index. The index name in pandas-on-Spark is ignored. By default, the index is always lost.
- options: keyword arguments for additional options specific to PySpark.
It is specific to PySpark’s JSON options to pass. Check the options in PySpark’s API documentation for spark.write.json(…). It has a higher priority and overwrites all other options. This parameter only works when path is specified.
- Returns
- str or None
Examples
>>> df = ps.DataFrame([['a', 'b'], ['c', 'd']], ... columns=['col 1', 'col 2']) >>> df.to_json() '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'
>>> df['col 1'].to_json() '[{"col 1":"a"},{"col 1":"c"}]'
>>> df.to_json(path=r'%s/to_json/foo.json' % path, num_files=1) >>> ps.read_json( ... path=r'%s/to_json/foo.json' % path ... ).sort_values(by="col 1") col 1 col 2 0 a b 1 c d
>>> df['col 1'].to_json(path=r'%s/to_json/foo.json' % path, num_files=1, index_col="index") >>> ps.read_json( ... path=r'%s/to_json/foo.json' % path, index_col="index" ... ).sort_values(by="col 1") col 1 index 0 a 1 c