pyspark.pandas.Series.reindex¶
-
Series.
reindex
(index: Optional[Any] = None, fill_value: Optional[Any] = None) → pyspark.pandas.series.Series¶ Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced.
- Parameters
- index: array-like, optional
New labels / index to conform to, should be specified using keywords. Preferably an Index object to avoid duplicating data
- fill_valuescalar, default np.NaN
Value to use for missing values. Defaults to NaN, but can be any “compatible” value.
- Returns
- Series with changed index.
See also
Series.reset_index
Remove row labels or move them to new columns.
Examples
Create a series with some fictional data.
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> ser = ps.Series([200, 200, 404, 404, 301], ... index=index, name='http_status') >>> ser Firefox 200 Chrome 200 Safari 404 IE10 404 Konqueror 301 Name: http_status, dtype: int64
Create a new index and reindex the Series. By default values in the new index that do not have corresponding records in the Series are assigned
NaN
.>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> ser.reindex(new_index).sort_index() Chrome 200.0 Comodo Dragon NaN IE10 404.0 Iceweasel NaN Safari 404.0 Name: http_status, dtype: float64
We can fill in the missing values by passing a value to the keyword
fill_value
.>>> ser.reindex(new_index, fill_value=0).sort_index() Chrome 200 Comodo Dragon 0 IE10 404 Iceweasel 0 Safari 404 Name: http_status, dtype: int64
To further illustrate the filling functionality in
reindex
, we will create a Series with a monotonically increasing index (for example, a sequence of dates).>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D') >>> ser2 = ps.Series([100, 101, np.nan, 100, 89, 88], ... name='prices', index=date_index) >>> ser2.sort_index() 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 Name: prices, dtype: float64
Suppose we decide to expand the series to cover a wider date range.
>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D') >>> ser2.reindex(date_index2).sort_index() 2009-12-29 NaN 2009-12-30 NaN 2009-12-31 NaN 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN Name: prices, dtype: float64