RegressionMetrics¶
-
class
pyspark.mllib.evaluation.
RegressionMetrics
(predictionAndObservations: pyspark.rdd.RDD[Tuple[float, float]])¶ Evaluator for regression.
- Parameters
- predictionAndObservations
pyspark.RDD
an RDD of prediction, observation and optional weight.
- predictionAndObservations
Examples
>>> predictionAndObservations = sc.parallelize([ ... (2.5, 3.0), (0.0, -0.5), (2.0, 2.0), (8.0, 7.0)]) >>> metrics = RegressionMetrics(predictionAndObservations) >>> metrics.explainedVariance 8.859... >>> metrics.meanAbsoluteError 0.5... >>> metrics.meanSquaredError 0.37... >>> metrics.rootMeanSquaredError 0.61... >>> metrics.r2 0.94... >>> predictionAndObservationsWithOptWeight = sc.parallelize([ ... (2.5, 3.0, 0.5), (0.0, -0.5, 1.0), (2.0, 2.0, 0.3), (8.0, 7.0, 0.9)]) >>> metrics = RegressionMetrics(predictionAndObservationsWithOptWeight) >>> metrics.rootMeanSquaredError 0.68...
Methods
call
(name, *a)Call method of java_model
Attributes
Returns the explained variance regression score.
Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.
Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.
Returns R^2^, the coefficient of determination.
Returns the root mean squared error, which is defined as the square root of the mean squared error.
Methods Documentation
-
call
(name: str, *a: Any) → Any¶ Call method of java_model
Attributes Documentation
-
explainedVariance
¶ Returns the explained variance regression score. explainedVariance = \(1 - \frac{variance(y - \hat{y})}{variance(y)}\)
-
meanAbsoluteError
¶ Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.
-
meanSquaredError
¶ Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.
-
r2
¶ Returns R^2^, the coefficient of determination.
-
rootMeanSquaredError
¶ Returns the root mean squared error, which is defined as the square root of the mean squared error.