pyspark.pandas.Series.describe¶
-
Series.
describe
(percentiles: Optional[List[float]] = None) → pyspark.pandas.series.Series¶ Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding
NaN
values.Analyzes both numeric and object series, as well as
DataFrame
column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.- Parameters
- percentileslist of
float
in range [0.0, 1.0], default [0.25, 0.5, 0.75] A list of percentiles to be computed.
- percentileslist of
- Returns
- DataFrame
Summary statistics of the Dataframe provided.
See also
DataFrame.count
Count number of non-NA/null observations.
DataFrame.max
Maximum of the values in the object.
DataFrame.min
Minimum of the values in the object.
DataFrame.mean
Mean of the values.
DataFrame.std
Standard deviation of the observations.
Notes
For numeric data, the result’s index will include
count
,mean
,std
,min
,25%
,50%
,75%
,max
.For object data (e.g. strings or timestamps), the result’s index will include
count
,unique
,top
, andfreq
. Thetop
is the most common value. Thefreq
is the most common value’s frequency. Timestamps also include thefirst
andlast
items.Examples
Describing a numeric
Series
.>>> s = ps.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.0 50% 2.0 75% 3.0 max 3.0 dtype: float64
Describing a
DataFrame
. Only numeric fields are returned.>>> df = ps.DataFrame({'numeric1': [1, 2, 3], ... 'numeric2': [4.0, 5.0, 6.0], ... 'object': ['a', 'b', 'c'] ... }, ... columns=['numeric1', 'numeric2', 'object']) >>> df.describe() numeric1 numeric2 count 3.0 3.0 mean 2.0 5.0 std 1.0 1.0 min 1.0 4.0 25% 1.0 4.0 50% 2.0 5.0 75% 3.0 6.0 max 3.0 6.0
For multi-index columns:
>>> df.columns = [('num', 'a'), ('num', 'b'), ('obj', 'c')] >>> df.describe() num a b count 3.0 3.0 mean 2.0 5.0 std 1.0 1.0 min 1.0 4.0 25% 1.0 4.0 50% 2.0 5.0 75% 3.0 6.0 max 3.0 6.0
>>> df[('num', 'b')].describe() count 3.0 mean 5.0 std 1.0 min 4.0 25% 4.0 50% 5.0 75% 6.0 max 6.0 Name: (num, b), dtype: float64
Describing a
DataFrame
and selecting custom percentiles.>>> df = ps.DataFrame({'numeric1': [1, 2, 3], ... 'numeric2': [4.0, 5.0, 6.0] ... }, ... columns=['numeric1', 'numeric2']) >>> df.describe(percentiles = [0.85, 0.15]) numeric1 numeric2 count 3.0 3.0 mean 2.0 5.0 std 1.0 1.0 min 1.0 4.0 15% 1.0 4.0 50% 2.0 5.0 85% 3.0 6.0 max 3.0 6.0
Describing a column from a
DataFrame
by accessing it as an attribute.>>> df.numeric1.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.0 50% 2.0 75% 3.0 max 3.0 Name: numeric1, dtype: float64
Describing a column from a
DataFrame
by accessing it as an attribute and selecting custom percentiles.>>> df.numeric1.describe(percentiles = [0.85, 0.15]) count 3.0 mean 2.0 std 1.0 min 1.0 15% 1.0 50% 2.0 85% 3.0 max 3.0 Name: numeric1, dtype: float64