ChiSqSelectorModel¶
-
class
pyspark.ml.feature.
ChiSqSelectorModel
(java_model: Optional[JavaObject] = None)¶ Model fitted by
ChiSqSelector
.Methods
clear
(param)Clears a param from the param map if it has been explicitly set.
copy
([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam
(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap
([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getFdr
()Gets the value of fdr or its default value.
Gets the value of featuresCol or its default value.
getFpr
()Gets the value of fpr or its default value.
getFwe
()Gets the value of fwe or its default value.
Gets the value of labelCol or its default value.
Gets the value of numTopFeatures or its default value.
getOrDefault
(param)Gets the value of a param in the user-supplied param map or its default value.
Gets the value of outputCol or its default value.
getParam
(paramName)Gets a param by its name.
Gets the value of percentile or its default value.
Gets the value of selectorType or its default value.
hasDefault
(param)Checks whether a param has a default value.
hasParam
(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined
(param)Checks whether a param is explicitly set by user or has a default value.
isSet
(param)Checks whether a param is explicitly set by user.
load
(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read
()Returns an MLReader instance for this class.
save
(path)Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set
(param, value)Sets a parameter in the embedded param map.
setFeaturesCol
(value)Sets the value of
featuresCol
.setOutputCol
(value)Sets the value of
outputCol
.transform
(dataset[, params])Transforms the input dataset with optional parameters.
write
()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
List of indices to select (filter).
Methods Documentation
-
clear
(param: pyspark.ml.param.Param) → None¶ Clears a param from the param map if it has been explicitly set.
-
copy
(extra: Optional[ParamMap] = None) → JP¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
- extradict, optional
Extra parameters to copy to the new instance
- Returns
JavaParams
Copy of this instance
-
explainParam
(param: Union[str, pyspark.ml.param.Param]) → str¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams
() → str¶ Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap
(extra: Optional[ParamMap] = None) → ParamMap¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
-
getFdr
() → float¶ Gets the value of fdr or its default value.
-
getFeaturesCol
() → str¶ Gets the value of featuresCol or its default value.
-
getFpr
() → float¶ Gets the value of fpr or its default value.
-
getFwe
() → float¶ Gets the value of fwe or its default value.
-
getLabelCol
() → str¶ Gets the value of labelCol or its default value.
-
getNumTopFeatures
() → int¶ Gets the value of numTopFeatures or its default value.
-
getOrDefault
(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getOutputCol
() → str¶ Gets the value of outputCol or its default value.
-
getParam
(paramName: str) → pyspark.ml.param.Param¶ Gets a param by its name.
-
getPercentile
() → float¶ Gets the value of percentile or its default value.
-
getSelectorType
() → str¶ Gets the value of selectorType or its default value.
-
hasDefault
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param has a default value.
-
hasParam
(paramName: str) → bool¶ Tests whether this instance contains a param with a given (string) name.
-
isDefined
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user or has a default value.
-
isSet
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user.
-
classmethod
load
(path: str) → RL¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
classmethod
read
() → pyspark.ml.util.JavaMLReader[RL]¶ Returns an MLReader instance for this class.
-
save
(path: str) → None¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
-
set
(param: pyspark.ml.param.Param, value: Any) → None¶ Sets a parameter in the embedded param map.
-
setFeaturesCol
(value: str) → P¶ Sets the value of
featuresCol
.
-
transform
(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame¶ Transforms the input dataset with optional parameters.
- Parameters
- dataset
pyspark.sql.DataFrame
input dataset
- paramsdict, optional
an optional param map that overrides embedded params.
- dataset
- Returns
pyspark.sql.DataFrame
transformed dataset
-
write
() → pyspark.ml.util.JavaMLWriter¶ Returns an MLWriter instance for this ML instance.
Attributes Documentation
-
fdr
: pyspark.ml.param.Param[float] = Param(parent='undefined', name='fdr', doc='The upper bound of the expected false discovery rate.')¶
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fpr
: pyspark.ml.param.Param[float] = Param(parent='undefined', name='fpr', doc='The highest p-value for features to be kept.')¶
-
fwe
: pyspark.ml.param.Param[float] = Param(parent='undefined', name='fwe', doc='The upper bound of the expected family-wise error rate.')¶
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
numTopFeatures
: pyspark.ml.param.Param[int] = Param(parent='undefined', name='numTopFeatures', doc='Number of features that selector will select, ordered by ascending p-value. If the number of features is < numTopFeatures, then this will select all features.')¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
-
percentile
: pyspark.ml.param.Param[float] = Param(parent='undefined', name='percentile', doc='Percentile of features that selector will select, ordered by ascending p-value.')¶
-
selectedFeatures
¶ List of indices to select (filter).
-
selectorType
: pyspark.ml.param.Param[str] = Param(parent='undefined', name='selectorType', doc='The selector type. Supported options: numTopFeatures (default), percentile, fpr, fdr, fwe.')¶
-