GBTClassificationModel

class pyspark.ml.classification.GBTClassificationModel(java_model: Optional[JavaObject] = None)

Model fitted by GBTClassifier.

Methods

clear(param)

Clears a param from the param map if it has been explicitly set.

copy([extra])

Creates a copy of this instance with the same uid and some extra params.

evaluateEachIteration(dataset)

Method to compute error or loss for every iteration of gradient boosting.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap([extra])

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

getCacheNodeIds()

Gets the value of cacheNodeIds or its default value.

getCheckpointInterval()

Gets the value of checkpointInterval or its default value.

getFeatureSubsetStrategy()

Gets the value of featureSubsetStrategy or its default value.

getFeaturesCol()

Gets the value of featuresCol or its default value.

getImpurity()

Gets the value of impurity or its default value.

getLabelCol()

Gets the value of labelCol or its default value.

getLeafCol()

Gets the value of leafCol or its default value.

getLossType()

Gets the value of lossType or its default value.

getMaxBins()

Gets the value of maxBins or its default value.

getMaxDepth()

Gets the value of maxDepth or its default value.

getMaxIter()

Gets the value of maxIter or its default value.

getMaxMemoryInMB()

Gets the value of maxMemoryInMB or its default value.

getMinInfoGain()

Gets the value of minInfoGain or its default value.

getMinInstancesPerNode()

Gets the value of minInstancesPerNode or its default value.

getMinWeightFractionPerNode()

Gets the value of minWeightFractionPerNode or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value.

getParam(paramName)

Gets a param by its name.

getPredictionCol()

Gets the value of predictionCol or its default value.

getProbabilityCol()

Gets the value of probabilityCol or its default value.

getRawPredictionCol()

Gets the value of rawPredictionCol or its default value.

getSeed()

Gets the value of seed or its default value.

getStepSize()

Gets the value of stepSize or its default value.

getSubsamplingRate()

Gets the value of subsamplingRate or its default value.

getThresholds()

Gets the value of thresholds or its default value.

getValidationIndicatorCol()

Gets the value of validationIndicatorCol or its default value.

getValidationTol()

Gets the value of validationTol or its default value.

getWeightCol()

Gets the value of weightCol or its default value.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

predict(value)

Predict label for the given features.

predictLeaf(value)

Predict the indices of the leaves corresponding to the feature vector.

predictProbability(value)

Predict the probability of each class given the features.

predictRaw(value)

Raw prediction for each possible label.

read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

setFeaturesCol(value)

Sets the value of featuresCol.

setLeafCol(value)

Sets the value of leafCol.

setPredictionCol(value)

Sets the value of predictionCol.

setProbabilityCol(value)

Sets the value of probabilityCol.

setRawPredictionCol(value)

Sets the value of rawPredictionCol.

setThresholds(value)

Sets the value of thresholds.

transform(dataset[, params])

Transforms the input dataset with optional parameters.

write()

Returns an MLWriter instance for this ML instance.

Attributes

cacheNodeIds

checkpointInterval

featureImportances

Estimate of the importance of each feature.

featureSubsetStrategy

featuresCol

getNumTrees

Number of trees in ensemble.

impurity

labelCol

leafCol

lossType

maxBins

maxDepth

maxIter

maxMemoryInMB

minInfoGain

minInstancesPerNode

minWeightFractionPerNode

numClasses

Number of classes (values which the label can take).

numFeatures

Returns the number of features the model was trained on.

params

Returns all params ordered by name.

predictionCol

probabilityCol

rawPredictionCol

seed

stepSize

subsamplingRate

supportedFeatureSubsetStrategies

supportedImpurities

supportedLossTypes

thresholds

toDebugString

Full description of model.

totalNumNodes

Total number of nodes, summed over all trees in the ensemble.

treeWeights

Return the weights for each tree

trees

Trees in this ensemble.

validationIndicatorCol

validationTol

weightCol

Methods Documentation

clear(param: pyspark.ml.param.Param) → None

Clears a param from the param map if it has been explicitly set.

copy(extra: Optional[ParamMap] = None) → JP

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters
extradict, optional

Extra parameters to copy to the new instance

Returns
JavaParams

Copy of this instance

evaluateEachIteration(dataset: pyspark.sql.dataframe.DataFrame) → List[float]

Method to compute error or loss for every iteration of gradient boosting.

Parameters
datasetpyspark.sql.DataFrame

Test dataset to evaluate model on.

explainParam(param: Union[str, pyspark.ml.param.Param]) → str

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams() → str

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra: Optional[ParamMap] = None) → ParamMap

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters
extradict, optional

extra param values

Returns
dict

merged param map

getCacheNodeIds() → bool

Gets the value of cacheNodeIds or its default value.

getCheckpointInterval() → int

Gets the value of checkpointInterval or its default value.

getFeatureSubsetStrategy() → str

Gets the value of featureSubsetStrategy or its default value.

getFeaturesCol() → str

Gets the value of featuresCol or its default value.

getImpurity() → str

Gets the value of impurity or its default value.

getLabelCol() → str

Gets the value of labelCol or its default value.

getLeafCol() → str

Gets the value of leafCol or its default value.

getLossType() → str

Gets the value of lossType or its default value.

getMaxBins() → int

Gets the value of maxBins or its default value.

getMaxDepth() → int

Gets the value of maxDepth or its default value.

getMaxIter() → int

Gets the value of maxIter or its default value.

getMaxMemoryInMB() → int

Gets the value of maxMemoryInMB or its default value.

getMinInfoGain() → float

Gets the value of minInfoGain or its default value.

getMinInstancesPerNode() → int

Gets the value of minInstancesPerNode or its default value.

getMinWeightFractionPerNode() → float

Gets the value of minWeightFractionPerNode or its default value.

getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getParam(paramName: str)pyspark.ml.param.Param

Gets a param by its name.

getPredictionCol() → str

Gets the value of predictionCol or its default value.

getProbabilityCol() → str

Gets the value of probabilityCol or its default value.

getRawPredictionCol() → str

Gets the value of rawPredictionCol or its default value.

getSeed() → int

Gets the value of seed or its default value.

getStepSize() → float

Gets the value of stepSize or its default value.

getSubsamplingRate() → float

Gets the value of subsamplingRate or its default value.

getThresholds() → List[float]

Gets the value of thresholds or its default value.

getValidationIndicatorCol() → str

Gets the value of validationIndicatorCol or its default value.

getValidationTol() → float

Gets the value of validationTol or its default value.

getWeightCol() → str

Gets the value of weightCol or its default value.

hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool

Checks whether a param has a default value.

hasParam(paramName: str) → bool

Tests whether this instance contains a param with a given (string) name.

isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool

Checks whether a param is explicitly set by user or has a default value.

isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool

Checks whether a param is explicitly set by user.

classmethod load(path: str) → RL

Reads an ML instance from the input path, a shortcut of read().load(path).

predict(value: T) → float

Predict label for the given features.

predictLeaf(value: pyspark.ml.linalg.Vector) → float

Predict the indices of the leaves corresponding to the feature vector.

predictProbability(value: pyspark.ml.linalg.Vector)pyspark.ml.linalg.Vector

Predict the probability of each class given the features.

predictRaw(value: pyspark.ml.linalg.Vector)pyspark.ml.linalg.Vector

Raw prediction for each possible label.

classmethod read() → pyspark.ml.util.JavaMLReader[RL]

Returns an MLReader instance for this class.

save(path: str) → None

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param: pyspark.ml.param.Param, value: Any) → None

Sets a parameter in the embedded param map.

setFeaturesCol(value: str) → P

Sets the value of featuresCol.

setLeafCol(value: str) → P

Sets the value of leafCol.

setPredictionCol(value: str) → P

Sets the value of predictionCol.

setProbabilityCol(value: str) → CM

Sets the value of probabilityCol.

setRawPredictionCol(value: str) → P

Sets the value of rawPredictionCol.

setThresholds(value: List[float]) → CM

Sets the value of thresholds.

transform(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame

Transforms the input dataset with optional parameters.

Parameters
datasetpyspark.sql.DataFrame

input dataset

paramsdict, optional

an optional param map that overrides embedded params.

Returns
pyspark.sql.DataFrame

transformed dataset

write() → pyspark.ml.util.JavaMLWriter

Returns an MLWriter instance for this ML instance.

Attributes Documentation

cacheNodeIds = Param(parent='undefined', name='cacheNodeIds', doc='If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval.')
checkpointInterval = Param(parent='undefined', name='checkpointInterval', doc='set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext.')
featureImportances

Estimate of the importance of each feature.

Each feature’s importance is the average of its importance across all trees in the ensemble The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie, Tibshirani, Friedman. “The Elements of Statistical Learning, 2nd Edition.” 2001.) and follows the implementation from scikit-learn.

featureSubsetStrategy = Param(parent='undefined', name='featureSubsetStrategy', doc="The number of features to consider for splits at each tree node. Supported options: 'auto' (choose automatically for task: If numTrees == 1, set to 'all'. If numTrees > 1 (forest), set to 'sqrt' for classification and to 'onethird' for regression), 'all' (use all features), 'onethird' (use 1/3 of the features), 'sqrt' (use sqrt(number of features)), 'log2' (use log2(number of features)), 'n' (when n is in the range (0, 1.0], use n * number of features. When n is in the range (1, number of features), use n features). default = 'auto'")
featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')
getNumTrees

Number of trees in ensemble.

impurity = Param(parent='undefined', name='impurity', doc='Criterion used for information gain calculation (case-insensitive). Supported options: variance')
labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')
leafCol = Param(parent='undefined', name='leafCol', doc='Leaf indices column name. Predicted leaf index of each instance in each tree by preorder.')
lossType = Param(parent='undefined', name='lossType', doc='Loss function which GBT tries to minimize (case-insensitive). Supported options: logistic')
maxBins = Param(parent='undefined', name='maxBins', doc='Max number of bins for discretizing continuous features. Must be >=2 and >= number of categories for any categorical feature.')
maxDepth = Param(parent='undefined', name='maxDepth', doc='Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. Must be in range [0, 30].')
maxIter = Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')
maxMemoryInMB = Param(parent='undefined', name='maxMemoryInMB', doc='Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size.')
minInfoGain = Param(parent='undefined', name='minInfoGain', doc='Minimum information gain for a split to be considered at a tree node.')
minInstancesPerNode = Param(parent='undefined', name='minInstancesPerNode', doc='Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be >= 1.')
minWeightFractionPerNode = Param(parent='undefined', name='minWeightFractionPerNode', doc='Minimum fraction of the weighted sample count that each child must have after split. If a split causes the fraction of the total weight in the left or right child to be less than minWeightFractionPerNode, the split will be discarded as invalid. Should be in interval [0.0, 0.5).')
numClasses

Number of classes (values which the label can take).

numFeatures

Returns the number of features the model was trained on. If unknown, returns -1

params

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.

predictionCol = Param(parent='undefined', name='predictionCol', doc='prediction column name.')
probabilityCol: Param[str] = Param(parent='undefined', name='probabilityCol', doc='Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.')
rawPredictionCol = Param(parent='undefined', name='rawPredictionCol', doc='raw prediction (a.k.a. confidence) column name.')
seed = Param(parent='undefined', name='seed', doc='random seed.')
stepSize = Param(parent='undefined', name='stepSize', doc='Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of each estimator.')
subsamplingRate = Param(parent='undefined', name='subsamplingRate', doc='Fraction of the training data used for learning each decision tree, in range (0, 1].')
supportedFeatureSubsetStrategies = ['auto', 'all', 'onethird', 'sqrt', 'log2']
supportedImpurities = ['variance']
supportedLossTypes = ['logistic']
thresholds = Param(parent='undefined', name='thresholds', doc="Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0, excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.")
toDebugString

Full description of model.

totalNumNodes

Total number of nodes, summed over all trees in the ensemble.

treeWeights

Return the weights for each tree

trees

Trees in this ensemble. Warning: These have null parent Estimators.

validationIndicatorCol = Param(parent='undefined', name='validationIndicatorCol', doc='name of the column that indicates whether each row is for training or for validation. False indicates training; true indicates validation.')
validationTol = Param(parent='undefined', name='validationTol', doc='Threshold for stopping early when fit with validation is used. If the error rate on the validation input changes by less than the validationTol, then learning will stop early (before `maxIter`). This parameter is ignored when fit without validation is used.')
weightCol = Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')