GaussianMixtureModel¶
-
class
pyspark.ml.clustering.
GaussianMixtureModel
(java_model: Optional[JavaObject] = None)¶ Model fitted by GaussianMixture.
Methods
clear
(param)Clears a param from the param map if it has been explicitly set.
copy
([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam
(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap
([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Gets the value of aggregationDepth or its default value.
Gets the value of featuresCol or its default value.
getK
()Gets the value of k
Gets the value of maxIter or its default value.
getOrDefault
(param)Gets the value of a param in the user-supplied param map or its default value.
getParam
(paramName)Gets a param by its name.
Gets the value of predictionCol or its default value.
Gets the value of probabilityCol or its default value.
getSeed
()Gets the value of seed or its default value.
getTol
()Gets the value of tol or its default value.
Gets the value of weightCol or its default value.
hasDefault
(param)Checks whether a param has a default value.
hasParam
(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined
(param)Checks whether a param is explicitly set by user or has a default value.
isSet
(param)Checks whether a param is explicitly set by user.
load
(path)Reads an ML instance from the input path, a shortcut of read().load(path).
predict
(value)Predict label for the given features.
predictProbability
(value)Predict probability for the given features.
read
()Returns an MLReader instance for this class.
save
(path)Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set
(param, value)Sets a parameter in the embedded param map.
setFeaturesCol
(value)Sets the value of
featuresCol
.setPredictionCol
(value)Sets the value of
predictionCol
.setProbabilityCol
(value)Sets the value of
probabilityCol
.transform
(dataset[, params])Transforms the input dataset with optional parameters.
write
()Returns an MLWriter instance for this ML instance.
Attributes
Array of
MultivariateGaussian
where gaussians[i] represents the Multivariate Gaussian (Normal) Distribution for Gaussian iRetrieve Gaussian distributions as a DataFrame.
Indicates whether a training summary exists for this model instance.
Returns all params ordered by name.
Gets summary (cluster assignments, cluster sizes) of the model trained on the training set.
Weight for each Gaussian distribution in the mixture.
Methods Documentation
-
clear
(param: pyspark.ml.param.Param) → None¶ Clears a param from the param map if it has been explicitly set.
-
copy
(extra: Optional[ParamMap] = None) → JP¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
- extradict, optional
Extra parameters to copy to the new instance
- Returns
JavaParams
Copy of this instance
-
explainParam
(param: Union[str, pyspark.ml.param.Param]) → str¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams
() → str¶ Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap
(extra: Optional[ParamMap] = None) → ParamMap¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
-
getAggregationDepth
() → int¶ Gets the value of aggregationDepth or its default value.
-
getFeaturesCol
() → str¶ Gets the value of featuresCol or its default value.
-
getK
() → int¶ Gets the value of k
-
getMaxIter
() → int¶ Gets the value of maxIter or its default value.
-
getOrDefault
(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getParam
(paramName: str) → pyspark.ml.param.Param¶ Gets a param by its name.
-
getPredictionCol
() → str¶ Gets the value of predictionCol or its default value.
-
getProbabilityCol
() → str¶ Gets the value of probabilityCol or its default value.
-
getSeed
() → int¶ Gets the value of seed or its default value.
-
getTol
() → float¶ Gets the value of tol or its default value.
-
getWeightCol
() → str¶ Gets the value of weightCol or its default value.
-
hasDefault
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param has a default value.
-
hasParam
(paramName: str) → bool¶ Tests whether this instance contains a param with a given (string) name.
-
isDefined
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user or has a default value.
-
isSet
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user.
-
classmethod
load
(path: str) → RL¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
predict
(value: pyspark.ml.linalg.Vector) → int¶ Predict label for the given features.
-
predictProbability
(value: pyspark.ml.linalg.Vector) → pyspark.ml.linalg.Vector¶ Predict probability for the given features.
-
classmethod
read
() → pyspark.ml.util.JavaMLReader[RL]¶ Returns an MLReader instance for this class.
-
save
(path: str) → None¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
-
set
(param: pyspark.ml.param.Param, value: Any) → None¶ Sets a parameter in the embedded param map.
-
setFeaturesCol
(value: str) → pyspark.ml.clustering.GaussianMixtureModel¶ Sets the value of
featuresCol
.
-
setPredictionCol
(value: str) → pyspark.ml.clustering.GaussianMixtureModel¶ Sets the value of
predictionCol
.
-
setProbabilityCol
(value: str) → pyspark.ml.clustering.GaussianMixtureModel¶ Sets the value of
probabilityCol
.
-
transform
(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame¶ Transforms the input dataset with optional parameters.
- Parameters
- dataset
pyspark.sql.DataFrame
input dataset
- paramsdict, optional
an optional param map that overrides embedded params.
- dataset
- Returns
pyspark.sql.DataFrame
transformed dataset
-
write
() → pyspark.ml.util.JavaMLWriter¶ Returns an MLWriter instance for this ML instance.
Attributes Documentation
-
aggregationDepth
= Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')¶
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
gaussians
¶ Array of
MultivariateGaussian
where gaussians[i] represents the Multivariate Gaussian (Normal) Distribution for Gaussian i
-
gaussiansDF
¶ Retrieve Gaussian distributions as a DataFrame. Each row represents a Gaussian Distribution. The DataFrame has two columns: mean (Vector) and cov (Matrix).
-
hasSummary
¶ Indicates whether a training summary exists for this model instance.
-
k
: pyspark.ml.param.Param[int] = Param(parent='undefined', name='k', doc='Number of independent Gaussians in the mixture model. Must be > 1.')¶
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
probabilityCol
= Param(parent='undefined', name='probabilityCol', doc='Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.')¶
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
summary
¶ Gets summary (cluster assignments, cluster sizes) of the model trained on the training set. An exception is thrown if no summary exists.
-
tol
= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
-
weightCol
= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
-
weights
¶ Weight for each Gaussian distribution in the mixture. This is a multinomial probability distribution over the k Gaussians, where weights[i] is the weight for Gaussian i, and weights sum to 1.
-