KernelDensity¶
-
class
pyspark.mllib.stat.
KernelDensity
¶ Estimate probability density at required points given an RDD of samples from the population.
Examples
>>> kd = KernelDensity() >>> sample = sc.parallelize([0.0, 1.0]) >>> kd.setSample(sample) >>> kd.estimate([0.0, 1.0]) array([ 0.12938758, 0.12938758])
Methods
estimate
(points)Estimate the probability density at points
setBandwidth
(bandwidth)Set bandwidth of each sample.
setSample
(sample)Set sample points from the population.
Methods Documentation
-
estimate
(points: Iterable[float]) → numpy.ndarray¶ Estimate the probability density at points
-
setBandwidth
(bandwidth: float) → None¶ Set bandwidth of each sample. Defaults to 1.0
-
setSample
(sample: pyspark.rdd.RDD[float]) → None¶ Set sample points from the population. Should be a RDD
-