HashingTF

class pyspark.ml.feature.HashingTF(*, numFeatures: int = 262144, binary: bool = False, inputCol: Optional[str] = None, outputCol: Optional[str] = None)

Maps a sequence of terms to their term frequencies using the hashing trick. Currently we use Austin Appleby’s MurmurHash 3 algorithm (MurmurHash3_x86_32) to calculate the hash code value for the term object. Since a simple modulo is used to transform the hash function to a column index, it is advisable to use a power of two as the numFeatures parameter; otherwise the features will not be mapped evenly to the columns.

Examples

>>> df = spark.createDataFrame([(["a", "b", "c"],)], ["words"])
>>> hashingTF = HashingTF(inputCol="words", outputCol="features")
>>> hashingTF.setNumFeatures(10)
HashingTF...
>>> hashingTF.transform(df).head().features
SparseVector(10, {5: 1.0, 7: 1.0, 8: 1.0})
>>> hashingTF.setParams(outputCol="freqs").transform(df).head().freqs
SparseVector(10, {5: 1.0, 7: 1.0, 8: 1.0})
>>> params = {hashingTF.numFeatures: 5, hashingTF.outputCol: "vector"}
>>> hashingTF.transform(df, params).head().vector
SparseVector(5, {0: 1.0, 2: 1.0, 3: 1.0})
>>> hashingTFPath = temp_path + "/hashing-tf"
>>> hashingTF.save(hashingTFPath)
>>> loadedHashingTF = HashingTF.load(hashingTFPath)
>>> loadedHashingTF.getNumFeatures() == hashingTF.getNumFeatures()
True
>>> loadedHashingTF.transform(df).take(1) == hashingTF.transform(df).take(1)
True
>>> hashingTF.indexOf("b")
5

Methods

clear(param)

Clears a param from the param map if it has been explicitly set.

copy([extra])

Creates a copy of this instance with the same uid and some extra params.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap([extra])

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

getBinary()

Gets the value of binary or its default value.

getInputCol()

Gets the value of inputCol or its default value.

getNumFeatures()

Gets the value of numFeatures or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value.

getOutputCol()

Gets the value of outputCol or its default value.

getParam(paramName)

Gets a param by its name.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

indexOf(term)

Returns the index of the input term.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

setBinary(value)

Sets the value of binary.

setInputCol(value)

Sets the value of inputCol.

setNumFeatures(value)

Sets the value of numFeatures.

setOutputCol(value)

Sets the value of outputCol.

setParams(self, \*[, numFeatures, binary, …])

Sets params for this HashingTF.

transform(dataset[, params])

Transforms the input dataset with optional parameters.

write()

Returns an MLWriter instance for this ML instance.

Attributes

binary

inputCol

numFeatures

outputCol

params

Returns all params ordered by name.

Methods Documentation

clear(param: pyspark.ml.param.Param) → None

Clears a param from the param map if it has been explicitly set.

copy(extra: Optional[ParamMap] = None) → JP

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters
extradict, optional

Extra parameters to copy to the new instance

Returns
JavaParams

Copy of this instance

explainParam(param: Union[str, pyspark.ml.param.Param]) → str

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams() → str

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra: Optional[ParamMap] = None) → ParamMap

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters
extradict, optional

extra param values

Returns
dict

merged param map

getBinary() → bool

Gets the value of binary or its default value.

getInputCol() → str

Gets the value of inputCol or its default value.

getNumFeatures() → int

Gets the value of numFeatures or its default value.

getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getOutputCol() → str

Gets the value of outputCol or its default value.

getParam(paramName: str)pyspark.ml.param.Param

Gets a param by its name.

hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool

Checks whether a param has a default value.

hasParam(paramName: str) → bool

Tests whether this instance contains a param with a given (string) name.

indexOf(term: Any) → int

Returns the index of the input term.

isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool

Checks whether a param is explicitly set by user or has a default value.

isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool

Checks whether a param is explicitly set by user.

classmethod load(path: str) → RL

Reads an ML instance from the input path, a shortcut of read().load(path).

classmethod read() → pyspark.ml.util.JavaMLReader[RL]

Returns an MLReader instance for this class.

save(path: str) → None

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param: pyspark.ml.param.Param, value: Any) → None

Sets a parameter in the embedded param map.

setBinary(value: bool)pyspark.ml.feature.HashingTF

Sets the value of binary.

setInputCol(value: str)pyspark.ml.feature.HashingTF

Sets the value of inputCol.

setNumFeatures(value: int)pyspark.ml.feature.HashingTF

Sets the value of numFeatures.

setOutputCol(value: str)pyspark.ml.feature.HashingTF

Sets the value of outputCol.

setParams(self, \*, numFeatures=1 << 18, binary=False, inputCol=None, outputCol=None)

Sets params for this HashingTF.

transform(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame

Transforms the input dataset with optional parameters.

Parameters
datasetpyspark.sql.DataFrame

input dataset

paramsdict, optional

an optional param map that overrides embedded params.

Returns
pyspark.sql.DataFrame

transformed dataset

write() → pyspark.ml.util.JavaMLWriter

Returns an MLWriter instance for this ML instance.

Attributes Documentation

binary: pyspark.ml.param.Param[bool] = Param(parent='undefined', name='binary', doc='If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. Default False.')
inputCol = Param(parent='undefined', name='inputCol', doc='input column name.')
numFeatures = Param(parent='undefined', name='numFeatures', doc='Number of features. Should be greater than 0.')
outputCol = Param(parent='undefined', name='outputCol', doc='output column name.')
params

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.