pyspark.pandas.DataFrame.std¶
-
DataFrame.
std
(axis: Union[int, str, None] = None, skipna: bool = True, ddof: int = 1, numeric_only: bool = None) → Union[int, float, bool, str, bytes, decimal.Decimal, datetime.date, datetime.datetime, None, Series]¶ Return sample standard deviation.
- Parameters
- axis{index (0), columns (1)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
Supported including NA/null values.
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
- numeric_onlybool, default None
Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility.
- Returns
- stdscalar for a Series, and a Series for a DataFrame.
Examples
>>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b'])
On a DataFrame:
>>> df.std() a 1.0 b 0.1 dtype: float64
>>> df.std(axis=1) 0 0.636396 1 1.272792 2 1.909188 3 NaN dtype: float64
>>> df.std(ddof=0) a 0.816497 b 0.081650 dtype: float64
On a Series:
>>> df['a'].std() 1.0
>>> df['a'].std(ddof=0) 0.816496580927726