LinearSVCModel

class pyspark.ml.classification.LinearSVCModel(java_model: Optional[JavaObject] = None)

Model fitted by LinearSVC.

Methods

clear(param)

Clears a param from the param map if it has been explicitly set.

copy([extra])

Creates a copy of this instance with the same uid and some extra params.

evaluate(dataset)

Evaluates the model on a test dataset.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap([extra])

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

getAggregationDepth()

Gets the value of aggregationDepth or its default value.

getFeaturesCol()

Gets the value of featuresCol or its default value.

getFitIntercept()

Gets the value of fitIntercept or its default value.

getLabelCol()

Gets the value of labelCol or its default value.

getMaxBlockSizeInMB()

Gets the value of maxBlockSizeInMB or its default value.

getMaxIter()

Gets the value of maxIter or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value.

getParam(paramName)

Gets a param by its name.

getPredictionCol()

Gets the value of predictionCol or its default value.

getRawPredictionCol()

Gets the value of rawPredictionCol or its default value.

getRegParam()

Gets the value of regParam or its default value.

getStandardization()

Gets the value of standardization or its default value.

getThreshold()

Gets the value of threshold or its default value.

getTol()

Gets the value of tol or its default value.

getWeightCol()

Gets the value of weightCol or its default value.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

predict(value)

Predict label for the given features.

predictRaw(value)

Raw prediction for each possible label.

read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

setFeaturesCol(value)

Sets the value of featuresCol.

setPredictionCol(value)

Sets the value of predictionCol.

setRawPredictionCol(value)

Sets the value of rawPredictionCol.

setThreshold(value)

Sets the value of threshold.

summary()

Gets summary (accuracy/precision/recall, objective history, total iterations) of model trained on the training set.

transform(dataset[, params])

Transforms the input dataset with optional parameters.

write()

Returns an MLWriter instance for this ML instance.

Attributes

aggregationDepth

coefficients

Model coefficients of Linear SVM Classifier.

featuresCol

fitIntercept

hasSummary

Indicates whether a training summary exists for this model instance.

intercept

Model intercept of Linear SVM Classifier.

labelCol

maxBlockSizeInMB

maxIter

numClasses

Number of classes (values which the label can take).

numFeatures

Returns the number of features the model was trained on.

params

Returns all params ordered by name.

predictionCol

rawPredictionCol

regParam

standardization

threshold

tol

weightCol

Methods Documentation

clear(param: pyspark.ml.param.Param) → None

Clears a param from the param map if it has been explicitly set.

copy(extra: Optional[ParamMap] = None) → JP

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters
extradict, optional

Extra parameters to copy to the new instance

Returns
JavaParams

Copy of this instance

evaluate(dataset: pyspark.sql.dataframe.DataFrame)pyspark.ml.classification.LinearSVCSummary

Evaluates the model on a test dataset.

Parameters
datasetpyspark.sql.DataFrame

Test dataset to evaluate model on.

explainParam(param: Union[str, pyspark.ml.param.Param]) → str

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams() → str

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra: Optional[ParamMap] = None) → ParamMap

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters
extradict, optional

extra param values

Returns
dict

merged param map

getAggregationDepth() → int

Gets the value of aggregationDepth or its default value.

getFeaturesCol() → str

Gets the value of featuresCol or its default value.

getFitIntercept() → bool

Gets the value of fitIntercept or its default value.

getLabelCol() → str

Gets the value of labelCol or its default value.

getMaxBlockSizeInMB() → float

Gets the value of maxBlockSizeInMB or its default value.

getMaxIter() → int

Gets the value of maxIter or its default value.

getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getParam(paramName: str)pyspark.ml.param.Param

Gets a param by its name.

getPredictionCol() → str

Gets the value of predictionCol or its default value.

getRawPredictionCol() → str

Gets the value of rawPredictionCol or its default value.

getRegParam() → float

Gets the value of regParam or its default value.

getStandardization() → bool

Gets the value of standardization or its default value.

getThreshold() → float

Gets the value of threshold or its default value.

getTol() → float

Gets the value of tol or its default value.

getWeightCol() → str

Gets the value of weightCol or its default value.

hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool

Checks whether a param has a default value.

hasParam(paramName: str) → bool

Tests whether this instance contains a param with a given (string) name.

isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool

Checks whether a param is explicitly set by user or has a default value.

isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool

Checks whether a param is explicitly set by user.

classmethod load(path: str) → RL

Reads an ML instance from the input path, a shortcut of read().load(path).

predict(value: T) → float

Predict label for the given features.

predictRaw(value: pyspark.ml.linalg.Vector)pyspark.ml.linalg.Vector

Raw prediction for each possible label.

classmethod read() → pyspark.ml.util.JavaMLReader[RL]

Returns an MLReader instance for this class.

save(path: str) → None

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param: pyspark.ml.param.Param, value: Any) → None

Sets a parameter in the embedded param map.

setFeaturesCol(value: str) → P

Sets the value of featuresCol.

setPredictionCol(value: str) → P

Sets the value of predictionCol.

setRawPredictionCol(value: str) → P

Sets the value of rawPredictionCol.

setThreshold(value: float)pyspark.ml.classification.LinearSVCModel

Sets the value of threshold.

summary()pyspark.ml.classification.LinearSVCTrainingSummary

Gets summary (accuracy/precision/recall, objective history, total iterations) of model trained on the training set. An exception is thrown if trainingSummary is None.

transform(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame

Transforms the input dataset with optional parameters.

Parameters
datasetpyspark.sql.DataFrame

input dataset

paramsdict, optional

an optional param map that overrides embedded params.

Returns
pyspark.sql.DataFrame

transformed dataset

write() → pyspark.ml.util.JavaMLWriter

Returns an MLWriter instance for this ML instance.

Attributes Documentation

aggregationDepth = Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')
coefficients

Model coefficients of Linear SVM Classifier.

featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')
fitIntercept = Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')
hasSummary

Indicates whether a training summary exists for this model instance.

intercept

Model intercept of Linear SVM Classifier.

labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')
maxBlockSizeInMB = Param(parent='undefined', name='maxBlockSizeInMB', doc='maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0.')
maxIter = Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')
numClasses

Number of classes (values which the label can take).

numFeatures

Returns the number of features the model was trained on. If unknown, returns -1

params

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.

predictionCol = Param(parent='undefined', name='predictionCol', doc='prediction column name.')
rawPredictionCol = Param(parent='undefined', name='rawPredictionCol', doc='raw prediction (a.k.a. confidence) column name.')
regParam = Param(parent='undefined', name='regParam', doc='regularization parameter (>= 0).')
standardization = Param(parent='undefined', name='standardization', doc='whether to standardize the training features before fitting the model.')
threshold: pyspark.ml.param.Param[float] = Param(parent='undefined', name='threshold', doc='The threshold in binary classification applied to the linear model prediction. This threshold can be any real number, where Inf will make all predictions 0.0 and -Inf will make all predictions 1.0.')
tol = Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')
weightCol = Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')