pyspark.SparkContext.sequenceFile¶
-
SparkContext.
sequenceFile
(path: str, keyClass: Optional[str] = None, valueClass: Optional[str] = None, keyConverter: Optional[str] = None, valueConverter: Optional[str] = None, minSplits: Optional[int] = None, batchSize: int = 0) → pyspark.rdd.RDD[Tuple[T, U]]¶ Read a Hadoop SequenceFile with arbitrary key and value Writable class from HDFS, a local file system (available on all nodes), or any Hadoop-supported file system URI. The mechanism is as follows:
A Java RDD is created from the SequenceFile or other InputFormat, and the key and value Writable classes
Serialization is attempted via Pickle pickling
If this fails, the fallback is to call ‘toString’ on each key and value
CPickleSerializer
is used to deserialize pickled objects on the Python side
- Parameters
- pathstr
path to sequencefile
- keyClass: str, optional
fully qualified classname of key Writable class (e.g. “org.apache.hadoop.io.Text”)
- valueClassstr, optional
fully qualified classname of value Writable class (e.g. “org.apache.hadoop.io.LongWritable”)
- keyConverterstr, optional
fully qualified name of a function returning key WritableConverter
- valueConverterstr, optional
fully qualifiedname of a function returning value WritableConverter
- minSplitsint, optional
minimum splits in dataset (default min(2, sc.defaultParallelism))
- batchSizeint, optional
The number of Python objects represented as a single Java object. (default 0, choose batchSize automatically)