pyspark.sql.DataFrame.groupBy¶
-
DataFrame.
groupBy
(*cols: ColumnOrName) → GroupedData¶ Groups the
DataFrame
using the specified columns, so we can run aggregation on them. SeeGroupedData
for all the available aggregate functions.groupby()
is an alias forgroupBy()
.- Parameters
Examples
>>> df.groupBy().avg().collect() [Row(avg(age)=3.5)] >>> sorted(df.groupBy('name').agg({'age': 'mean'}).collect()) [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)] >>> sorted(df.groupBy(df.name).avg().collect()) [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)] >>> sorted(df.groupBy(['name', df.age]).count().collect()) [Row(name='Alice', age=2, count=1), Row(name='Bob', age=5, count=1)]