class MultivariateGaussian extends Serializable
This class provides basic functionality for a Multivariate Gaussian (Normal) Distribution. In the event that the covariance matrix is singular, the density will be computed in a reduced dimensional subspace under which the distribution is supported. (see Degenerate case in Multivariate normal distribution (Wikipedia))
- Annotations
- @Since( "1.3.0" )
- Alphabetic
- By Inheritance
- MultivariateGaussian
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
logpdf(x: Vector): Double
Returns the log-density of this multivariate Gaussian at given point, x
Returns the log-density of this multivariate Gaussian at given point, x
- Annotations
- @Since( "1.3.0" )
-
val
mu: Vector
- Annotations
- @Since( "1.3.0" )
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
pdf(x: Vector): Double
Returns density of this multivariate Gaussian at given point, x
Returns density of this multivariate Gaussian at given point, x
- Annotations
- @Since( "1.3.0" )
-
val
sigma: Matrix
- Annotations
- @Since( "1.3.0" )
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()