Packages

class NaiveBayes extends Serializable with Logging

Trains a Naive Bayes model given an RDD of (label, features) pairs.

This is the Multinomial NB (see here) which can handle all kinds of discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification. By making every vector a 0-1 vector, it can also be used as Bernoulli NB (see here). The input feature values must be nonnegative.

Annotations
@Since( "0.9.0" )
Linear Supertypes
Logging, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. NaiveBayes
  2. Logging
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new NaiveBayes()
    Annotations
    @Since( "0.9.0" )
  2. new NaiveBayes(lambda: Double)
    Annotations
    @Since( "1.4.0" )

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  10. def getLambda: Double

    Get the smoothing parameter.

    Get the smoothing parameter.

    Annotations
    @Since( "1.4.0" )
  11. def getModelType: String

    Get the model type.

    Get the model type.

    Annotations
    @Since( "1.4.0" )
  12. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  13. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  14. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  15. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  16. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  17. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  18. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  19. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  20. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  21. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  22. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  23. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  24. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  25. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  26. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  27. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  28. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  29. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  30. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  31. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  32. def run(data: RDD[LabeledPoint]): NaiveBayesModel

    Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries.

    Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries.

    data

    RDD of org.apache.spark.mllib.regression.LabeledPoint.

    Annotations
    @Since( "0.9.0" )
  33. def setLambda(lambda: Double): NaiveBayes

    Set the smoothing parameter.

    Set the smoothing parameter. Default: 1.0.

    Annotations
    @Since( "0.9.0" )
  34. def setModelType(modelType: String): NaiveBayes

    Set the model type using a string (case-sensitive).

    Set the model type using a string (case-sensitive). Supported options: "multinomial" (default) and "bernoulli".

    Annotations
    @Since( "1.4.0" )
  35. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  36. def toString(): String
    Definition Classes
    AnyRef → Any
  37. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  38. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  39. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped