class FPGrowthModel extends Model[FPGrowthModel] with FPGrowthParams with MLWritable
Model fitted by FPGrowth.
- Annotations
- @Since( "2.2.0" )
- Grouped
- Alphabetic
- By Inheritance
- FPGrowthModel
- MLWritable
- FPGrowthParams
- HasPredictionCol
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      An alias for getOrDefault().An alias for getOrDefault().- Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        associationRules: DataFrame
      
      
      Get association rules fitted using the minConfidence. Get association rules fitted using the minConfidence. Returns a dataframe with five fields, "antecedent", "consequent", "confidence", "lift" and "support", where "antecedent" and "consequent" are Array[T], whereas "confidence", "lift" and "support" are Double. - Annotations
- @Since( "2.2.0" ) @transient()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): FPGrowthModel.this.type
      
      
      Clears the user-supplied value for the input param. Clears the user-supplied value for the input param. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copy(extra: ParamMap): FPGrowthModel
      
      
      Creates a copy of this instance with the same UID and some extra params. Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().- Definition Classes
- FPGrowthModel → Model → Transformer → PipelineStage → Params
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
      
      
      Copies param values from this instance to another instance for params shared by them. Copies param values from this instance to another instance for params shared by them. This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
- the target instance, which should work with the same set of default Params as this source instance 
- extra
- extra params to be copied to the target's - paramMap
- returns
- the target instance with param values copied 
 - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      Default implementation of copy with extra params. Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance. - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      Explains a param. Explains a param. - param
- input param, must belong to this instance. 
- returns
- a string that contains the input param name, doc, and optionally its default value and the user-supplied value 
 - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      Explains all params of this instance. Explains all params of this instance. See explainParam().- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      extractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        freqItemsets: DataFrame
      
      
      - Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      Optionally returns the user-supplied value of a param. Optionally returns the user-supplied value of a param. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      Gets the default value of a parameter. Gets the default value of a parameter. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getItemsCol: String
      
      
      - Definition Classes
- FPGrowthParams
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getMinConfidence: Double
      
      
      - Definition Classes
- FPGrowthParams
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getMinSupport: Double
      
      
      - Definition Classes
- FPGrowthParams
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getNumPartitions: Int
      
      
      - Definition Classes
- FPGrowthParams
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      Gets the value of a param in the embedded param map or its default value. Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      Gets a param by its name. Gets a param by its name. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getPredictionCol: String
      
      
      - Definition Classes
- HasPredictionCol
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      Tests whether the input param has a default value set. Tests whether the input param has a default value set. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      Tests whether this instance contains a param with a given name. Tests whether this instance contains a param with a given name. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParent: Boolean
      
      
      Indicates whether this Model has a corresponding parent. 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      Checks whether a param is explicitly set or has a default value. Checks whether a param is explicitly set or has a default value. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      Checks whether a param is explicitly set. Checks whether a param is explicitly set. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        itemsCol: Param[String]
      
      
      Items column name. Items column name. Default: "items" - Definition Classes
- FPGrowthParams
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        minConfidence: DoubleParam
      
      
      Minimal confidence for generating Association Rule. Minimal confidence for generating Association Rule. minConfidence will not affect the mining for frequent itemsets, but will affect the association rules generation. Default: 0.8 - Definition Classes
- FPGrowthParams
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        minSupport: DoubleParam
      
      
      Minimal support level of the frequent pattern. Minimal support level of the frequent pattern. [0.0, 1.0]. Any pattern that appears more than (minSupport * size-of-the-dataset) times will be output in the frequent itemsets. Default: 0.3 - Definition Classes
- FPGrowthParams
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        numPartitions: IntParam
      
      
      Number of partitions (at least 1) used by parallel FP-growth. Number of partitions (at least 1) used by parallel FP-growth. By default the param is not set, and partition number of the input dataset is used. - Definition Classes
- FPGrowthParams
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      Returns all params sorted by their names. Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param. - Definition Classes
- Params
- Note
- Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params. 
 
- 
      
      
      
        
      
    
      
        
        var
      
      
        parent: Estimator[FPGrowthModel]
      
      
      The parent estimator that produced this model. The parent estimator that produced this model. - Definition Classes
- Model
- Note
- For ensembles' component Models, this value can be null. 
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        predictionCol: Param[String]
      
      
      Param for prediction column name. Param for prediction column name. - Definition Classes
- HasPredictionCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      Saves this ML instance to the input path, a shortcut of write.save(path).Saves this ML instance to the input path, a shortcut of write.save(path).- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): FPGrowthModel.this.type
      
      
      Sets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): FPGrowthModel.this.type
      
      
      Sets a parameter (by name) in the embedded param map. Sets a parameter (by name) in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): FPGrowthModel.this.type
      
      
      Sets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): FPGrowthModel.this.type
      
      
      Sets default values for a list of params. Sets default values for a list of params. Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
- a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called. 
 - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): FPGrowthModel.this.type
      
      
      Sets a default value for a param. Sets a default value for a param. - param
- param to set the default value. Make sure that this param is initialized before this method gets called. 
- value
- the default value 
 - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setItemsCol(value: String): FPGrowthModel.this.type
      
      
      - Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setMinConfidence(value: Double): FPGrowthModel.this.type
      
      
      - Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setParent(parent: Estimator[FPGrowthModel]): FPGrowthModel
      
      
      Sets the parent of this model (Java API). Sets the parent of this model (Java API). - Definition Classes
- Model
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setPredictionCol(value: String): FPGrowthModel.this.type
      
      
      - Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      - Definition Classes
- FPGrowthModel → Identifiable → AnyRef → Any
- Annotations
- @Since( "3.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_]): DataFrame
      
      
      The transform method first generates the association rules according to the frequent itemsets. The transform method first generates the association rules according to the frequent itemsets. Then for each transaction in itemsCol, the transform method will compare its items against the antecedents of each association rule. If the record contains all the antecedents of a specific association rule, the rule will be considered as applicable and its consequents will be added to the prediction result. The transform method will summarize the consequents from all the applicable rules as prediction. The prediction column has the same data type as the input column(Array[T]) and will not contain existing items in the input column. The null values in the itemsCol columns are treated as empty sets. WARNING: internally it collects association rules to the driver and uses broadcast for efficiency. This may bring pressure to driver memory for large set of association rules. - Definition Classes
- FPGrowthModel → Transformer
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
      
      
      Transforms the dataset with provided parameter map as additional parameters. Transforms the dataset with provided parameter map as additional parameters. - dataset
- input dataset 
- paramMap
- additional parameters, overwrite embedded params 
- returns
- transformed dataset 
 - Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
      
      
      Transforms the dataset with optional parameters Transforms the dataset with optional parameters - dataset
- input dataset 
- firstParamPair
- the first param pair, overwrite embedded params 
- otherParamPairs
- other param pairs, overwrite embedded params 
- returns
- transformed dataset 
 - Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      Check transform validity and derive the output schema from the input schema. Check transform validity and derive the output schema from the input schema. We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Definition Classes
- FPGrowthModel → PipelineStage
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      :: DeveloperApi :: :: DeveloperApi :: Derives the output schema from the input schema and parameters, optionally with logging. This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise. - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      An immutable unique ID for the object and its derivatives. An immutable unique ID for the object and its derivatives. - Definition Classes
- FPGrowthModel → Identifiable
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        validateAndTransformSchema(schema: StructType): StructType
      
      
      Validates and transforms the input schema. Validates and transforms the input schema. - schema
- input schema 
- returns
- output schema 
 - Attributes
- protected
- Definition Classes
- FPGrowthParams
- Annotations
- @Since( "2.2.0" )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      Returns an MLWriterinstance for this ML instance.Returns an MLWriterinstance for this ML instance.- Definition Classes
- FPGrowthModel → MLWritable
- Annotations
- @Since( "2.2.0" )
 
Inherited from MLWritable
Inherited from FPGrowthParams
Inherited from HasPredictionCol
Inherited from Model[FPGrowthModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
 Databricks Scala Spark API
   Databricks Scala Spark API