serverless_gpu.asynchronous
Asynchronous execution and monitoring for distributed serverless GPU compute.
This module provides asynchronous execution capabilities for serverless GPU jobs, including:
Non-blocking job submission and execution
Real-time job monitoring and status updates
Environment synchronization across distributed nodes
Job lifecycle management and error handling
Integration with Databricks workspace for job tracking
Functions
|
Returns a list of currently running DistributedFunctionCall instances that (optionally) match the specified function. |
|
Prints the details of all specified DistributedFunctionCall instances. |
|
Stops all specified DistributedFunctionCall instances. |
|
Waits for all specified job instances to finish. |
Classes
- serverless_gpu.asynchronous.get_calls(function_name=None, function_callable=None, start_time_from=None, end_time_to=None, status=None, active_only=True, limit=5)[source]
Returns a list of currently running DistributedFunctionCall instances that (optionally) match the specified function.
- Parameters
function_name (
Optional
[str
]) – Optional name of the function to filter byfunction_callable (
Optional
[Callable
]) – Optional callable to get function name fromstart_time_from (
Optional
[float
]) – Optional start time filterend_time_to (
Optional
[float
]) – Optional end time filterstatus (
Optional
[RunStatus
]) – Optional RunStatus to filter byactive_only (
bool
) – Whether to only return active runslimit (
int
) – Optional maximum number of calls to return
- serverless_gpu.asynchronous.print_runs(runs)[source]
Prints the details of all specified DistributedFunctionCall instances. If no runs are specified, prints all currently running DistributedFunctionCall instances.
- Return type
None