Quick Start Guide ================= This guide will help you get started with Serverless GPU API quickly. Basic Usage ----------- Here's a simple example of how to use Serverless GPU API: .. code-block:: python from serverless_gpu.launcher import distributed from serverless_gpu.compute import GPUType @distributed(gpus=8, gpu_type=GPUType.H100, remote=True) def my_function(**kwargs): # Your code here pass my_function.distributed(x=5) For parameter sweeps, here's another example: .. code-block:: python from serverless_gpu import distributed @distributed( gpus=2, gpu_type='a10', remote=True, # Uses remote gpus, not the gpus that are attached to your notebook run_async=True, # Enables multiple async workloads at once ) def my_training_function(learning_rate: float): # TRAINING CODE HERE # Launch multiple async executions calls = [] for lr in [1e-3, 1e-4, 1e-5] # Launches the training code in my_training_function with different learning rates! calls.append(my_training_function.distributed(lr)) # Wait for completion wait(calls) # Your distributed computation code here # Serverless GPU API will handle the multi-GPU orchestration Next Steps ---------- * Read the :doc:`overview` to understand Serverless GPU API's architecture * Check out the :doc:`api/modules` for detailed API documentation * Explore other examples in the repository