Lakehouse Monitoring for GenAI
For more details see What is Lakehouse Monitoring for generative AI?
- databricks.agents.monitoring.create_external_monitor(*, catalog_name: str, schema_name: str, assessments_config: AssessmentsSuiteConfig | dict, experiment_id: str | None = None, experiment_name: str | None = None) ExternalMonitor
Create a monitor for a GenAI application served outside Databricks.
- Parameters:
catalog_name (str) – The name of the catalog in UC to create the checkpoint table in.
schema_name (str) – The name of the schema in UC to create the checkpoint table in.
assessments_config (AssessmentsSuiteConfig | dict) – The configuration for the suite of assessments to be run on traces from the GenAI application.
experiment_id (str | None, optional) – ID of Mlflow experiment that the monitor should be associated with. Defaults to the currently active experiment.
experiment_name (str | None, optional) – The name of the Mlflow experiment that the monitor should be associated with. Defaults to the currently active experiment.
- Returns:
The created monitor.
- Return type:
ExternalMonitor
- databricks.agents.monitoring.delete_external_monitor(*, experiment_id: str | None = None, experiment_name: str | None = None) None
Deletes the monitor for a GenAI application served outside Databricks.
- databricks.agents.monitoring.get_external_monitor(*, experiment_id: str | None = None, experiment_name: str | None = None) ExternalMonitor
Gets the monitor for a GenAI application served outside Databricks.
- Parameters:
- Raises:
ValueError – When neither experiment_id nor experiment_name is provided.
ValueError – When no monitor is found for the given experiment_id or experiment_name.
- Returns:
The retrieved external monitor.
- Return type:
entities.ExternalMonitor
- databricks.agents.monitoring.update_external_monitor(*, experiment_id: str | None = None, experiment_name: str | None = None, assessments_config: AssessmentsSuiteConfig | dict) ExternalMonitor
Updates the monitor for an GenAI application served outside Databricks.
- Parameters:
assessments_config (assessments.AssessmentsSuiteConfig) – The updated configuration for the suite of assessments to be run on traces from the AI system. Partial updates of arrays is not supported, so assessments specified here will override your monitor’s assessments. If unspecified, non-nested fields like
sample
will not be updated.experiment_id (str | None, optional) – ID of the Mlflow experiment that the monitor is associated with. Defaults to None.
experiment_name (str | None, optional) – Name of the Mlflow experiment that the monitor is associated with. Defaults to None.
- Raises:
ValueError – When assessments_config is not provided.
- Returns:
The updated external monitor.
- Return type:
entities.ExternalMonitor
- databricks.agents.monitoring.create_monitor(endpoint_name: str, *, monitoring_config: dict | MonitoringConfig, experiment_id: str | None = None) Monitor
Create a monitor for a Databricks serving endpoint.
- Parameters:
endpoint_name – The name of the serving endpoint.
monitoring_config – The monitoring configuration.
experiment_id – The experiment ID to log the monitoring results. Defaults to the experiment used to log the model that is serving the provided
endpoint_name
.
- Returns:
The monitor for the serving endpoint.
- databricks.agents.monitoring.delete_monitor(*, endpoint_name: str | None = None) None
Deletes a monitor for a Databricks serving endpoint.
- Parameters:
endpoint_name (str, optional) – The name of the agent’s serving endpoint.
- databricks.agents.monitoring.get_monitor(*, endpoint_name: str) Monitor
Retrieves a monitor for a Databricks serving endpoint.
- Parameters:
endpoint_name (str, optional) – The name of the agent’s serving endpoint.
- Returns:
Monitor | ExternalMonitor metadata. For external monitors, this will include the status of the ingestion endpoint.
- databricks.agents.monitoring.update_monitor(*, endpoint_name: str, monitoring_config: dict | MonitoringConfig) Monitor
Partially update a monitor for a serving endpoint.
- class databricks.agents.monitoring.AssessmentsSuiteConfig(sample: float | None = None, paused: bool | None = None, assessments: list[AssessmentConfig] | None = None)
Bases:
object
Configuration for a suite of assessments to be run on traces from a GenAI application.
- Raises:
ValueError – When sample is not between 0.0 (exclusive) and 1.0 (inclusive).
ValueError – When more than one guidelines judge is found.
ValueError – When duplicate builtin judges are found.
- class databricks.agents.monitoring.GuidelinesJudge(guidelines: dict[str, list[str]])
Bases:
AssessmentConfig
Configuration for a guideline adherence judge to be run on traces from an GenAI application.
- Raises:
ValueError – When there are duplicate keys in
guidelines
dict.ValueError – When there are duplicate values for a key in
guidelines
dict.
- class databricks.agents.monitoring.BuiltinJudge(name: Literal['safety', 'groundedness', 'relevance_to_query', 'chunk_relevance'])
Bases:
AssessmentConfig
Configuration for a builtin judge to be run on traces from a GenAI application.
- Raises:
ValueError – When the judge name is invalid.
- class databricks.agents.monitoring.Monitor(endpoint_name: str, evaluated_traces_table: str, monitoring_config: MonitoringConfig, experiment_id: str, workspace_path: str)
Bases:
object
The monitor for a serving endpoint.
- monitoring_config: MonitoringConfig
- classmethod from_dict(kvs: dict | list | str | int | float | bool | None, *, infer_missing=False) A
- classmethod from_json(s: str | bytes | bytearray, *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) A
- class databricks.agents.monitoring.MonitoringConfig(sample: float | None = None, metrics: list[str] | None = None, periodic: PeriodicMonitoringConfig | None = None, paused: bool | None = None, global_guidelines: dict[str, list[str]] | None = None)
Bases:
object
Configuration for monitoring an GenAI application. All fields are optional for upsert semantics.
periodic
is deprecated and will be removed in a future release.- classmethod from_assessments_suite_config(assessments_suite_config: AssessmentsSuiteConfig) MonitoringConfig
- to_assessments_suite_config() AssessmentsSuiteConfig
- classmethod from_dict(kvs: dict | list | str | int | float | bool | None, *, infer_missing=False) A
- classmethod from_json(s: str | bytes | bytearray, *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) A